LA FENOLOGÍA COMO HERRAMIENTA EN LA AGROCLIMATOLOGÍA 1. Introducción |
|
|
1. INTRODUCCIÓN.
En la actualidad se dispone de suficiente información sobre los factores climáticos, edáficos y biológicos involucrados en la duración del ciclo biológico y producción de los cultivos, sin embargo, es bastante frecuente encontrar que para referirse a un momento determinado de su ciclo biológico, esto se haga en términos de una escala de tiempo (Días Después de la Siembra, DDS) relacionándola con las observaciones y prácticas que se llevan a cabo en ellos sin tomar en cuenta el efecto de tales factores sobre la morfología de las plantas.
El ciclo biológico cambia con el genotipo y con los factores del clima, esto quiere decir, que las plantas del mismo genotipo sembradas bajo diferentes condiciones climáticas pueden presentar diferentes estados de desarrollo después de transcurrido el mismo tiempo cronológico. Por lo que cada vez cobra mayor importancia el uso de escalas fenológicas que permiten a la vez, referirse a las observaciones y prácticas de manejo del cultivo en una etapa de desarrollo determinado.
Dado que el producto final de un cultivo, no es sino la consecuencia de un proceso derivado de las actividades agrícolas efectuadas durante todo el ciclo, para los investigadores y productores se hace necesario el conocimiento de la fenología agrícola y la posible duración de las diferentes etapas.
El estudio de los eventos periódicos naturales involucrados en la vida de las plantas se denomina fenología (Volpe, 1992; Villalpando y Ruiz, 1993; Schwartz,1999) palabra que deriva del griego phaino que significa manifestar, y logos tratado. Fournier, 1978 señala que es el estudio de los fenómenos biológicos acomodados a cierto ritmo periódico como la brotación, la maduración de los frutos y otros. Como es natural, estos fenómenos se relacionan con el clima de la localidad en que ocurre; y viceversa, de la fenología se puede sacar secuencias relativas al clima y sobre todo al microclima cuando ni uno, ni otro se conocen debidamente.
Fase: La aparición, transformación o desaparición rápida de los órganos vegetales se llama fase. La emergencia de plantas pequeñas, la brotación de la vid, la floración del manzano son verdaderas fases fenológicas (Torres, 1995).
Etapa: Una etapa fenológica esta delimitada por dos fases sucesivas. Dentro de ciertas etapas se presentan períodos críticos, que son el intervalo breve durante el cual la planta presenta la máxima sensibilidad a determinado elemento, de manera que las oscilaciones en los valores de este fenómeno meteorológico se reflejan en el rendimiento del cultivo; estos periodos críticos se presentan generalmente poco antes o después de las fases, durante dos o tres semanas.
El comienzo y fin de fases y etapas sirven como medio para juzgar la rapidez del desarrollo de las plantas (Torres, 1995).
El término fenología se cree tuvo su primer uso por el botánico belga Charles Morren en 1958, sin embargo, la observación de eventos fenológicos data de varios siglos atrás en la antigua China, quienes desarrollaron calendarios fenológicos, siglos antes de Jesucristo.
Desde hace mas de 200 años algunos agricultores de los E.E.U.U. iniciaron sus registros de las fechas de siembra, emergencia, foliación, caída de hojas, y otros, de muchas especies de plantas. Luego del desarrollo del termómetro se hizo posible correlacionar estas etapas del desarrollo con el clima, especialmente con la temperatura y humedad. En 1918 Andrew Hopkins estableció la ley Bioclimática, ampliada en 1938, donde se recomienda el uso de observaciones fenológicas en lugar de observaciones meteorológicas ya que las primeras integran los efectos del microclima y los factores edáficos en la vida de las plantas, de tal forma que otro instrumento no lo puede hacer.
El propósito de este documento es señalar una metodología para evaluar fenología agrícola en frutales.
2. APLICACIONES.
Existen dos formas de aplicación de las observaciones fenológicas para llegar a ciertas conclusiones (Alcántara,1987):
1. Variables Independientes. El uso de los eventos fenológicos como una herramienta para la investigación microclimática. Los eventos fenológicos representan a sus propios parámetros climáticos, por lo que pueden ser tratados independientes sin consultar el clima local.
1.a. Comparación de eventos diferentes para la misma especie en la misma localidad, diferentes épocas. Ej. Comparación de la fase de brotación, floración para la parchita en Maracay, sembradas en dos fechas diferentes.
1.b. Comparación del mismo evento particular de la misma especie en localidades diferentes. Ej. Comparación de la fase de floración en girasol en diferentes lugares del país.
1.c. Comparación de eventos de especies diferentes ocurriendo al mismo tiempo y en la misma localidad. Ej. Comparación de la fase de floración en cítricos (Citrus spp.), mango (Mangifera indica L.) y aguacate (Persa americana M.) que ocurren en las mismas fechas y en el mismo lugar.
1.d. Comparación de eventos de especies diferentes que ocurren a tiempos diferentes en la misma localidad. Ej. Comparación de la brotación en diferentes cultivos que se presentan en distintas épocas del año en el mismo lugar.
2. Variable Dependiente. El uso de los eventos fenológicos como integradores de los efectos microclimáticos sobre plantas y animales.
2.a. El uso de eventos biológicos como indicadores de la presencia o ausencia de ciertos factores ambientales.
2.b. Varias combinaciones de datos ambientales y fenológicos para llegar a ciertas conclusiones o hacer predicciones respecto a las respuestas vegetales.
Unidades Térmicas Acumuladas
La temperatura controla la tasa de desarrollo de muchos organismos, que requieren de la acumulación de cierta cantidad de calor para pasar de un estado en su ciclo de vida a otro. La medida de este calor acumulado se conoce como Tiempo Fisiológico, y teóricamente este concepto que involucra la combinación adecuada de grados de temperatura y el tiempo cronológico, es siempre el mismo (WMO,1993)
En términos generales, debajo de una temperatura umbral mínima (Figura 1), determinada genéticamente para cada organismo, el desarrollo no ocurre o es insignificante. Sobre dicha temperatura, el desarrollo se incrementa hasta llegar a un pico o intervalo, donde la velocidad del desarrollo es máxima. A partir de ahí, el desarrollo decrece nuevamente hasta llegar a ser nulo en una temperatura umbral máxima, estos valores se conocen como Temperaturas Cardinales (Ruiz, 1991) En algunos casos pueden ser utilizado segmentos de la curva de desarrollo para fines específicos, como la estimación de temperatura base (Figura 1).
Figura 1. Relación entre la tasa de desarrollo y la temperatura (WMO, 1993)
El crecimiento y desarrollo de las plantas e insectos puede ser caracterizado por el número de días entre eventos observables, tales como floración y madurez de frutos, etc. El número de días entre eventos, sin embargo, puede constituir una mala herramienta porque las tasas de crecimiento varían con las temperaturas. La medición de eventos puede ser mejorada si se expresan las unidades de desarrollo en términos de tiempo fisiológico en lugar de tiempo cronológico, por ejemplo en términos de acumulación de temperatura. Es así como surge el término de días grado o Grados Día (GD) que puede ser definido como días en términos de grado sobre una temperatura umbral (Arnold, 1959). De manera que para completarse una etapa fenológica es necesario la acumulación del Requerimiento Térmico, RT; este se mide en grados-días sobre la temperatura base.
El concepto de GD al aplicarse a observaciones fenológicas ha sido de gran utilidad en la agricultura. Entre las múltiples aplicaciones de este parámetro se encuentran las indicadas por Neild y Seeley (1977) como son:
1. Programación de fechas de siembra o ciclos de cultivo
2. Pronóstico de fechas de cosecha
3. Determinar el desarrollo esperado en diferentes localidades
4. Determinar el desarrollo esperado en diferentes fechas de
siembra o inicio del ciclo de cultivo
5. Determinar el desarrollo esperado de diferentes genotipos
6. Pronosticar coeficientes de evapotranspiración de cultivos
7. Pronóstico de plagas y enfermedades
La mayoría de estas aplicaciones se sustentan en modelos de grados día para describir el desarrollo de plantas e insectos, de ahí que el concepto de GD se utilice más bien como Grados Día de Desarrollo (GDD) (Ruiz, 1991). Algunos autores señalan que el éxito de los grados días depende de una relación estrecha entre radiación y temperatura, fotoperíodo y temperatura y de cultivares adaptados a fotoperíodo locales (Hodges y Doraiswamy,1979). En la mayoría de los modelos desarrollados para describir el desarrollo de cultivos y plagas donde se han considerado factores climáticos, los que presentan más aplicación se fundamentan en la temperatura o la interacción de esta con el fotoperíodo y se basan en relaciones no lineales con posibilidad de transformación lineal (Ruiz, 1991).
3. FENOLOGÍA EN LA AGRICULTURA
En el transcurso de la historia, el hombre ha utilizado su conocimiento sobre los eventos fenológicos en la agricultura. La fenología, la cual fue una parte integral de las antiguas prácticas agrícolas, aún mantiene una muy cercana relación con la agricultura moderna a través de sus valiosas contribuciones.
Los eventos comúnmente observados en cultivos agrícolas y hortícolas son: siembra, germinación, emergencia (inicio), floración (primera, completa y última) y cosecha. Los eventos adicionales observados en ciertos cultivos específicos incluyen: presencia de yema, aparición de hojas, maduración de frutos, caída de hojas para varios árboles frutales.
El periodo entre dos distintas fases es llamado Estado Fenológico (Villalpando y Ruiz,1993). La designación de eventos fenológicos significativos varía con el tipo de planta en observación.
Por ejemplo los estados fenológicos del mango pueden identificarse como:
Aparición de hojas nuevas: fecha en que aparecen las primeras hojas de un nuevo ciclo de desarrollo
Floración: momento en que la mitad de la unidad de muestreo presenta las primeras flores
Amarre del fruto: fecha en que la mitad de la unidad de muestreo aparece el fruto incipiente, aún envuelto por vestigios florales
Inicio de desarrollo del fruto: momento en que en la mitad de la unidad de muestreo los frutos alcanzan 2 cm de diámetro
Terminación del desarrollo del fruto: fecha en que en la mitad de la unidad de muestreo se logra el máximo desarrollo del fruto.
Madurez: fecha en que el fruto alcanza la madurez para cosecha
Se debe considerar que un cultivo puede no desarrollar todas sus fases fenológicas (Aparición de nueva hoja, Floración, Inicio de desarrollo del fruto, Fin de desarrollo del fruto y Madurez del fruto), si crece en condiciones climatológicas diferentes a su región de origen (Ruiz, 1991).
Todos estos estados son visualmente detectables. Para estados no visualmente detectables (estados de dormancia), Marcucci (1948) citado por Solórzano (1994), elaboró una serie de estudios fisio-morfológicos de las fases de pre-aparición de yemas y pre-floración en los árboles. Encontró que en este estado de dormancia, las yemas indiferénciales no están completamente en dormancía, y llamó a este periodo "cryptofase".
Azzi (1956) citado por Solórzano (1994), en su estudio en la almendra, señala la existencia de un estado prolongado de latencia entre la presencia de un fruto incipiente y la maduración del fruto.
Otros aspectos que son regularmente observados pueden considerarse como indicadores fenológicos del patrón del crecimiento y desarrollo del cultivo. Para árboles frutales, las fechas de floración y maduración de frutos se aceptan generalmente como indicadores significativos. En el caso de árboles frutales, arbustivos perennes, el período entre la floración y la presencia de un fruto incipiente se ha reconocido durante mucho tiempo como uno de los estados de desarrollo importantes. De manera que el conteo aleatorio de flores (número de flores en pocas ramas seleccionadas), del conteo de frutos (número de frutos de un tamaño específico en las ramas usadas en el conteo de flores) y peso, constituyen indicadores destacados de rendimientos (Villalpando y Ruiz, 1993)
4. METODOLOGÍA PROPUESTA
A continuación se señalan los diferentes formatos a utilizar en el campo para tomar los datos fenológicos de cultivos perennes:
4.1. Registro Fenológico
REGISTRO FENOLOGICO MENSUAL DE CULTIVOS PERENNES |
|||||
País | Estado | Estación | |||
Cultivo | Variedad | Año de plantación | |||
Año | Mes | Observador |
Nombre de las fases fenológica observada para: | ||||
Día de la observación | Planta 1 | Planta 2 | Planta 3 | Planta 4 |
1 | - | - | - | - |
8 | - | - | - | - |
15 | floración | - | floración | floración |
29 | I.des.fruto | - | I.des.fruto | I.des.fruto |
Importante: Indique los tratamientos de manejo o acciones que modifiquen el curso natural de la fenología |
REGISTRO FENOLOGICO SEMANAL PARA FRUTALES | |||||
Estación | Mes y año | Observador | |||
No. | No. | No. | |||
Posición | Código de fase | Posición | Código de fase | Posición | Código de fase |
N | N | N | |||
S | S | S | |||
E | E | E | |||
O | O | O | |||
No | No | No |
Código Fases | Fases a Observar | Considere las semanas del mes como: |
|
0 | Yema hinchada | 1: del día 01 al 07 | |
1 | Brotes de 10 a 15 cm | 2: del día 08 al 15 | |
2 | Inflorescencia visible (1 cm) | 3: del día 16 al 23 | |
3 | Primera flor | 4: del día 24 al 31 | |
4 | Plena floración (50%) | ||
5 | Fruto pequeño (1,5 cm) | ||
6 | Maduración (50%) | ||
7 | Cosecha | ||
R | Reposo |
La investigación en la fenología puede agruparse en tres categorías de acuerdo a varios aspectos del crecimiento y desarrollo de la planta:
Distribución espacial. Se usa isolíneas para indicar la misma referencia en días respecto a la isófona normal para un año específico. Las isolíneas pueden aplicarse a todos los eventos fenológicos.
Variación temporal. En esta, la secuencia de tiempo de ocurrencia de uno o más eventos fenológicos de una especie particular o de un número de especies se observa para una localidad geográfica fija. La observación de la variación anual en la fecha de floración de una planta específica en una localidad, con relación a la temperatura extrema es un ejemplo de este tipo de investigación. Otro ejemplo es la construcción de un calendario fenológico para un área específica.
Relaciones temporales y espaciales. La distribución en la variación de tiempo, de un simple o varios eventos son investigados en un área geográfica amplia. Un ejemplo es la ley Bioclimática de Hopkins (Alcántara,1987).
4.2. Cambios Estacionales y Calendarios
Un calendario fenológico apropiado puede proporcionar información útil concerniente al ciclo de vida de un grupo de plantas y animales, este tipo de información no la suministra, ni el calendario astronómico, ni el calendario climatológico. El calendario real chino creado por el emperador de la Dinastía Han (500 A.C.) ofrecía las fechas normales para varias prácticas, y además guiaba cualquier desviación de lo normal en base a las observaciones fenológicas anuales. Ha sido utilizado por los agricultores chinos desde hace 2500 años. Para 1949 Schnelle (Alcántara, 1987) construyó un calendario fenológico para áreas de gran altitud para el sur de Alemania tomando una media de 10 años de las fechas iniciales de varios eventos fenológicos, usó un total de 28 plantas nativas, 30 plantas cultivadas y 30 árboles frutales, y obtuvo por ejemplo, que Marzo 4 se designó como la fecha de floración del avellano; Mayo 7 floración de la manzana.
En general un calendario ideal que señala los cambios estacionales y el desarrollo de las plantas requiere observaciones por tiempo prolongado de eventos fenológicas, junto con una medición concisa microambiental (Alcántara,1987). Tales observaciones deben duplicarse para un área geográfica amplia, en consideración a latitud, longitud, altitud y tipo de suelo.
4.3. Técnicas Múltiples en Agrofenología
Eventos fenológicos y elementos del tiempo atmosférico: debido a que la temperatura y la precipitación son criticas a la respuesta de los cultivos y son partes regulares del reporte meteorológico, estas son dos de los eventos fenológicos. Cuando la temperatura se emplea como una medida del ambiente, la temperatura media y temperatura acumulada son los dos parámetros frecuentemente más utilizados. El gradiente de temperatura vertical, la inversión de temperatura, temperatura del suelo, y las temperaturas extremas también se usan. La temperatura media y la temperatura acumulada son estadísticamente idénticas y promedian la singularidad de los cambios de temperatura afectando el crecimiento vegetal, a menos que se haga uso la media de un periodo corto de temperatura (Alcántara,1987).
Cuando la lluvia se usa como una medida en el estudio de los eventos fenológicos se hace uso de su media mensual, la precipitación extrema, el numero de días lluviosos y eventualmente la frecuencia. Sin embargo, la precipitación por sí misma se estudia independientemente de otros factores ambientales. Más no es un parámetro efectivo como lo son otros factores ambientales (Alcántara,1987).
Formulación empírica: En esta los eventos fenológicos se correlacionan con los factores ambientales por medio de formulación matemática. Es simple, porque uno necesita sólo convertir sus datos en una fórmula dada y determinar los coeficientes. No involucra el desarrollo de los principios de las relaciones funcionales de las leyes físicas y las leyes fisiológicas.
Los establecimientos experimentales a gran escala son conocidos como Jardines Fenológicos Internacionales, estos fueron recomendados por Schnelle y Volkdert (Alcántara,1987) para estudios comparativos internacionales. Ellos sugieren un grupo de plantas genéticamente heterogéneas resistentes, poseyendo relativamente numerosas y distintas fases fenológicas en todas las estaciones, como material aconsejable para observación.
5. CONCLUSIONES
Las principales variables que controlan la fenología de un cultivo son: fecha de siembra, duración del día, temperatura, suministro de humedad, componente genético, y manejo de la planta.
Un cultivo puede no desarrollar todas sus fases fenológicas si crece en condiciones climatologías diferentes a su región de origen.
Debido a su naturaleza interdisciplinaria, las investigaciones fenológicas pueden ser dificultosas debido a la necesidad de categorizar bajo disciplinas tradicionalmente científicas.
Tres áreas que actualmente utilizan la información fenológica son: sensores remotos, cambios climáticos y modelos.
La contribución potencial de la fenología, podría ser el desarrollo de trabajos de observaciones sistemáticas a escala nacional y global en las próximas décadas, constituyendo un conocimiento de la relación atmósfera-biosfera con implicaciones de cambio global (Schwartz, 1999).
6. BIBLIOGRAFÍA
- Arnold, C. Y. 1959. The determination and significance of base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci., 74: 430-445.
- Alcántara, R. A. 1987. Fenología y Cambios Estacionales. Traducción libre de Phenology and Seasonal Changes. Notas de clase para Fenología Agrícola y Agrometeorología, Chapingo, México.
- Fournier, L. y C. Charpantier. 1978. El tamaño de la muestra y la frecuencia de las observaciones en el estudio de las características fenológicas de los árboles tropicales. Cespedesia. Suplemento 2. Vol VII, 25-26.
- Hodges, T. y P.C. Doraiswamy. 1979. Crop phenology literature review for corn, soybean, wheat, barley, sorghum, rice, cotton and sunflower. Agristars Technical Report. Lockheed Electronics Co. Inc. 1830 Nasa Road 1, Houston, Texas 77058.
- Neild, R. y M.W. Seeley. 1977. Applications of growing degree days in field corn production. In: Agrometeorology of the maize crop. WMO N° 481. p. 426-436. Geneva, Swtzerland.
- Solórzano V.1994. Guías fenológicas para cultivos básicos, oleaginosos, sacaríferos, tubérculos y fibras. Universidad Autónoma de Chapingo, Dpto. de Fitotecnia, Fenología Agrícola. p. 162.
- Ruiz, A. 1991. Caracterización Fenológica del Guayabo (Psidium guayava L.). Tesis de Maestría en Ciencias. Colegio de Postgraduados, Montecillo, México. p. 78.
- Torres R., E. 1995. Agrometeorología. Editorial Trillas, S.A. de C. V. México, D.F. p. 154.
- Villalpando, J. y A. Ruiz, 1993. Observaciones Agrometeorológicas y su uso en la agricultura. Editorial Lumusa, México. p. 133.
- Volpe, C. A. 1992. Citrus Phenology. In: Proceedings of the Second International Seminar on Cítrus Physiology, p. 103-122.
- Schwartz, M. D. 1999. Advancing to full bloom: planning phonological research for the 21st century. 42:113-118.
- WMO. 1993. Practical use of agrometeorological data and information for planning and operational activities in agriculture. WMO. Publication N° 60. Geneva.
Mercedes de Azkues
INIA-CENIAP-IIRA-Agroclimatología
INIA de Venezuela